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INTRODUCTION
The Fourier analysis of TBT data has been first applied at LEP in 1992 as a tool for

measuring the uncoupled linear optics.

TBT data at the jth BPM following a single kick in the z plane (z ≡ x, y)

zjn =
1

2

√
βjzeiΦ

j
zAzeiQz(θj+2πn) + c.c.

with n ≡ turn number Az = |Az|eiδz ≡ constant of motion

Φz ≡ µz −Qzθ (periodic phase function)

Twiss functions:

βjz = |Zj(Qz)|2/A2
z µjz = arg (Zj)− δz

Zj(Qz) ≡ Fourier component of zj

Amplitude fit:

|Az|2 =

∑
j 1/β0j

z∑
j 1/|Zj(Qz))|2
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LINEAR COUPLING

Method of the variation of constants:

The general solution of the perturbed motion keeps the form of the unperturbed one

with constants depending on timea”

Hamiltonian in presence of a perturbation, H1,

U = U0 +H1(~z) = U0 +H1(V ~A) = U0 + U1( ~A)

Equations of motion
dAj

dt
= Σm[Aj, Am]

∂U1

∂Am

When the unperturbed hamiltonian describe the betatron motion, thus

dAz

dθ
= i

∂U1

∂A∗z

dA∗z
dθ

= −i
∂U1

∂Az

aθ in our case
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For perturbation fields generating linear coupling (Guignard)

U1(~a) =
1

2
[C+(θ)axay + C∗+(θ)a∗xa

∗
y + C−axa

∗
y + C∗−a

∗
xay]

az ≡ Aze
iQzθ

where

C±(θ) ≡
R
√
βxβy

2Bρ

{(∂Bx

∂x
−
∂By

∂y

)
+Bθ

[(αx
βx
−
αy

βy

)
−i
( 1

βx
∓

1

βy

)]}
ei(Φx±Φy)

and

Φz ≡ µz −Qzθ
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“Ansatz”(Yuri Alexahin)

ax(θ) = ax0(θ) + w∗−(θ)ay0(θ) + w∗+(θ)a∗y0(θ)

ay(θ) = ay0(θ)− w−(θ)a∗x0(θ) + w∗+(θ)a∗x0(θ)

Inserting into the equation of motion and keeping the first order terms one finds the

equations for w±

2ie−iQ±θ
d

dθ
eiQ±θw±(θ) = C±(θ)

which periodic solutions are

w±(θ) = −
∫ 2π

0

dθ′
C±(θ′)

4 sinπQ±
e−iQ±[θ−θ′−πsign(θ−θ′)]

with

Q± ≡ Qx ±Qy
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The functions w̃± ≡ w±eiQ±θ are

• constant in coupler free regions

• experience a discontinuity −iC±`/2R at coupler locations

• on the resonances Qx ±Qy = int are constant.

Minimum tune split

∆ ≡ |C̄n−
− | C̄

n±
± =

1

2π

∫ 2π

0

dθ C±ein±θ =
n± −Q±

π

∫ 2π

0

dθ w±ein±θ

with

n± ≡ Round(Qx ±Qy)
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Linear coupling computation trough TBT analysis

TBT beam position at the jth vertical BPM following a horizontal kick

yjn =
[√
βjy

(
e−iΦ

j
ywj+ − eiΦ

j
ywj−

)
−
√
βjxeiΦ

j
x sinχj

]
AxeiQx(θj+2πn) + c.c.

TBT beam position at the j-th horizontal BPM following a vertical kick

xjn =
[√
βjx

(
e−iΦ

j
xwj+ + eiΦ

j
xw∗j−

)
+
√
βjyeiΦ

j
y sinχj

]
AyeiQy(θj+2πn) + c.c.

(χj ≡ tilt of the jth BPM).

The FFT of yj at Qx, Y j(Qx), for a horizontal kick (Xj(Qy) for a vertical one) is

proportional to the coupling functions w±(θj).

Assuming χj known, we get two real equations per BPM in 4 unknowns. When between

two consecutive monitors there are no strong source of coupling, the four equations can

be solved in favor of w±(θj) = w±(θj+1).
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TEVATRON EXAMPLES

TEVATRON has 118 horizontal and 118 vertical BPM’s. They can store 8192 positions

data per BPM. The upgrade of their electronics allows a precise measurement of the

TBT beam position (resolution' 50 µm) and made possible the use of TBT techniques.

Under “ideal” conditions the oscillations following a kick last some thousand turns

TBT position after a horizontal kick
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Reconstructed Injection Optics (2006)
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Coupling functions (2006)
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Minimum tune split measured with S.A. and computed from TBT data
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EFFECT OF ERRORS

BPM’s calibration errors affect the value of βjz computed through the Fourier analysis.

The effect of random calibration errors results in a unphysical beta-beating which is

likely to average away when computing the oscillation amplitude.

A systematic calibration error has no effect on the evaluation of the β functions, but

results in a wrong estimate of the oscillation amplitude and therefore of wj± (unless the

error is the same, for both horizontal and vertical BPM’s).

By requiring

Mmeas
12 = M theo

12 (or Mmeas
34 = M theo

34 )

one can compute βjz resorting only on the measured phase advance. This requires (at

least) three (consecutive) BPM’s. Comparison with the value computed through the

Fourier analysis may be used to calibrate the BPM’s involved. However this will not

correct for a possible systematic calibration error.
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Through simulations we have estimated that the error on the evaluation of |C̄−| is

• ∼ 2.5% for 5% systematic calibration error of either horizontal or vertical BPM’s

(they cancel out when the error has the same value)

• 0.5% for 5% random calibration errors

• a systematic tilt by 10 of all BPM’s results in a error |δC̄−| ' 0.0002

• the error due to random tilts is negligible.
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An application program for the TBT analysis has been integrated in the TEVATRON

control system and is used routinely at shot set up for correcting the linear coupling.

The correction is accurate and very fast compared to the usual method of finding the

minimum tune split by empirical adjustement of the skew quadrupole circuits.

The time needed to retrieve the data has been greatly improveda. Although now we could

use more BPM’s also for routine operation we kept the old scheme, just 5 horizontal

and 5 vertical BPM’s, the TEVATRON working point (Qx=20.584 and Qz=20.574)

being close to Qx±Qy = int. Off-line analysis using all BPM’s has shown only little

differences.

TEVATRON being a fast ramping machine (83 seconds from 150 to 980 GeV), the

TBT analysis is the only practical method for measuring optics and coupling also during

acceleration. The application has been used several times, in particular after long shut-

downs, for decoupling on the ramp.

ait used to be for instance 7 minutes for 256 turns and 236 BPM’s
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Tunes on ramp after 2006 shut-down

Very first ramp before correction ...after correction
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FIT OF TBT DATA USING MAD-X

The Fourier analysis of the measured TBT data

xn = AI

√
βxI cos(φxI + δI + 2πnQI) +

AII

√
βxII cos(φxII + δII + 2πnQII)

yn = AI

√
βyI cos(φyI + δI + 2πnQI) +

AII

√
βyII cos(φyII + δII + 2πnQII)

gives the coupled Mais-Ripken twiss functions βzI,II and φzI,II (z ≡ x, y), a part for

the constants of motion AI,II and δI,II .
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The eigenvectors of the coupled transport matrix are related to the Mais-Ripken twiss

functions

V11 ≡
√
βxI cosφxI V12 ≡

√
βxI sinφxI

V13 ≡
√
βxII cosφxII V14 ≡

√
βxII sinφxII

V31 ≡
√
βyI cosφyI V32 ≡

√
βyI sinφyI

V33 ≡
√
βyII cosφyII V34 ≡

√
βyII sinφyII
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Taking into account that the BPMs may have (unknown) calibration errors and may be

tilted around the longitudinal axisa the actual eigenvector components are related to the

measured ones, V̄ i
lk (i ≡ BPM index), by

1
AI

[cos(δI)V̄
i

11 + V̄ i
12 sin(δI)] = 1

ri
V i

11 + χi

ri
V i

31

1
AI

[− sin(δI)V̄
i

11 + V̄ i
12 cos(δI)] = 1

ri
V i

12 + χi

ri
V i

32

1
AII

[cos(δII)V̄
i

13 + V̄ i
14 sin(δII)] = 1

ri
V i

13 + χi

ri
V i

33

1
AII

[− sin(δII)V̄
i

13 + V̄ i
14 cos(δII)] = 1

ri
V i

14 + χi

ri
V i

34

1
AI

[cos(δI)V̄
i

31 + V̄ i
32 sin(δI)] = 1

ri
V i

31 −
χi

ri
V i

11

1
AI

[− sin(δI)V̄
i

31 + V̄ i
32 cos(δI)] = 1

ri
V i

32 −
χi

ri
V i

12

1
AII

[cos(δII)V̄
i

33 + V̄ i
34 sin(δII)] = 1

ri
V i

33 −
χi

ri
V i

13

1
AII

[− sin(δII)V̄
i

33 + V̄ i
34 cos(δII)] = 1

ri
V i

34 −
χi

ri
V i

14

aThe BPM reading is related to the actual beam position by

xmeas =
x+ y tanχ

rx

ymeas =
y − x tanχ

ry

with χ ≡ BPM tilt and rz ≡ z/zmeas (z ≡ x, y).
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Goal: adjust

• quadrupole gradient and tilt

• BPMs calibration and tilt

• AI,II and δI,II

in order to fit the measured eigenvector values at the BPMs.

It could be a good alternative to time consuming (for both data taking and computation)

Orbit Response Matrix methods currently used.

MAD-X is capable of matching coupled optics and allows user-defined expressions in

matching constraints (“macros”).

MAD-X TWISS uses Edwards-Teng formalism.

MAD-X PTC TWISS uses Mais-Ripken formalism, but it is too slow for matching pur-

poses.
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The two formalism are of course related, the relationships between the two sets of twiss

functions being

βxI = κβ1 βyII = κβ2 φxI = ϕ1 φyII = ϕ2

βxII = κ[R22(R22β2 + 2R12α2) +R2
12γ2]

βyI = κ[R11(R11β1 − 2R12α1) +R2
12γ1]

φxII = ϕ2 − arctan[R12/(R22β2 +R12α2)]

φyI = ϕ1 + arctan[R12/(R11β1 −R12α1)]

with κ ≡ 1/(1 + |R|), R being a 2 × 2 matrix, also computed by MAD-X.

Use MAD-X macros to define

• Mais-Ripken functions in terms of Edwards-Teng ones

• constraints & variables
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Application to Tevatron

• Number of observation points: 2 × 118

• Current Tevatron model (A.Valishev): 216 normal and 216 skew thin quadrupoles

to simulate gradient and tilt errors. We must add the unknown BPM calibrations

and tilts, with the additional condition < ri >=1, and the oscillation amplitude

and phase.

All together: 908 parameters and 945 constraints. The fit is time consuming, therefore

• simplify input by lumping elements and declare them as one MATRIX

• split fit

– use MADX for fitting magnetic elements

– fit linearly BPMs calibration and tilt by a different code

and iterate

But
• Still too slow for a console application→ write our one minimisation code

• Problems by fitting real data (July 07): no convergence (preliminary).
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